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differential equations, they can also be solved in the case of practical importance of piece- 
wise-constant functions O*jln(y~,R,I) that model a fibrous material or composite comprised or a 
periodic system of qrains and a material filling the space between them. In this case the 
following continuity conditions on the grain surface /l, 2/ 

must be appended to the local problems. 
Here Iti are components of the vector normal to the contact surface, ‘where we have Ai,= 

in (3.8) and (4.6). 
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VARIATIONAL METHODS I N THREE-D IMENS I ONAL PROBLEMS OF 
NON-STATIONARY INTERACTION OF ELASTIC BODIES WITH FRICTION* 

A.A. SPEKTOR 

Three-dimensional contact problems are examined for the interaction between 
a moving elastic body and an elastic foundation under friction conditions. 
The desired friction force and slip fields depend on the time. A boundary 
value problem is formulated in the velocities and is reduced to a parabolic 
variational inequality. Its difference approximation is proposed and will 
be used to provide a foundation for formulating the problem in increments. 
A number of methods is proposed for the numerical solution of the problem. 
The time behaviour of the solution of the non-stationary problem is 
investigated, The non-stationarity effects in contact problems with 
friction are considered first under conditions of body displacement 
relative to the foundation /l/. Three-dimensional problems formulated in 
increments of the desired functions were studied in /2/. Quasistatic 
problems in increments and dynamic problems on the contact between a stamp 
and elastic solid of finite size were investigated /3/. The method of 
reducing the non-stationary parabolic problems to sequences of variational 
problems (in application to viscoplastic flow problems) was used in /4, 5/. 

1. Kinematic relationships. Boundary conditions. We examine the motion of an 
elastic body on an elastic foundation with a plane surface. we consider the velocities of the 
*Fr~kl.Mat~.~~an.,51,1~76-83,1987 
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surfaces making contact to be made up of the velocities of the solid and the foundation, 
considered as absolutely rigid, and additional velocities that occur due to elastic strains in 
the contact domain. We introduce an owlx system of coordinates with origin at the point of 
tangency between the solid and the foundation in the undeformed state, moving over the foun- 
dation with a velocity of this point V (V,,V,). Let vf(v,f,u,f) be the field of tangential 
velocities of the solid and foundation surfaces in the neighbourhood of the point 0 without 
taking account of the elastic strains, and uf @,f, +*) arethe elastic tangentialdisplacements 
of points of these surfaces. Then for the total tangential velocities s* andthe slipvelocities 
of the surfacesinthe contact domain s we will have 

s*=v* + ~=v*+u**+v*graall* tw 
s==v+u'-Vggradu, v---v+-v-, u--u+--u-, U-X-$ (1.2) 

Assuming henceforth that v is a function of x,y, t, we consider for simplicity that the 
velocity v does not change with time. 

The three components on the right-hand side of the first equality in (1.2) define the 
"hard" local component (because of non-stationarity of the process) and the transfer component 
(because of coordinate system motion) of the slip velocity. Together with the general case 
of taking account of all the components mentioned (for example, during roll with slip) we 
will also consider the case of slow body motion when the transfer velocities are much less 
than the remaining slip components and cannot be taken into account. This occurs during a 
displacement with respect to the foundation of a body initially at rest when its displacement 
velocity is of the order of &he elastic strain rates. 

The boundary conditions, which are referred to the z = 0 plane because the contact is 
local, will have the form 

w=w+-w->6 -j+ = F, 9% = 1 t I = 0 (1.3) 
w=F, a,\(0 

where w* are elastic normal displacements of the body and foundation surfaces, a, are normal 
stresses, ‘t (+csz, Tvz) tangential stresses on the surface, f+ is the function giving the body 
surface, and 6 is the normal closure between the body and the foundation, We consider the 
function F to be independent of time. 

Relationships (1.31 describe the free body and foundation surfaces and their contact 
domain, while relationships (1.4) describe the friction conditions in the contact domain (in 
the adhesion and slip domains). We confine ourselves below to cases when problem (1.3) of 
determining the contact domain and its normal stresses is separated from problem (1.4) of 
finding the friction forces. In particular, for identical elastic constants of the body and 
the foundation this will be either when one of them is incompressible, and the other is 
absolutely rigid, or both are incompressible. We shall later investigate problem (1.4) under 
the assumption that u,, are determined in the contact domain E. Methods of finding them and 
examples of calculations are given in /6-S/, say. 

Using the same expressions for the surface displacements as for two half-spaces z<o 
and Z>O, we will have, from (1.2) 

where B is an integral operator with the kernel 

i 

I 

l-vsins0 vsin8c0s8 

ncR vsinecose 1-vcosS8 

G-1 = ‘/a (G;’ + GI’), v = ‘/,G (v&l -I- v_G?) 

R = 1/(x - 0 -t (rm - Y’)‘, co9 0 = z - x’lR, sin 0 = y - y'/R 

G+c-,, v+(-, are the shear moduli and Poisson's ratios of the body and the foundation. 
Thus, a non-stationary boundary value problem (l-4), (1.5) has been formulated to determine 

r (% I? G. The following reasoning is used below to solve it. System (1.4) (taking (1.5) into 
account) can be written in the form of a single ineguality 

7os(To)> rs(r0) (9.6) 
which holds for any s,y,t and a selected T,,, the solution of problem (1.4), among the functions 
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z satisfying the inequality 1 Z I< -p(fJrr)Uz,. Indeed, the left and riqht sides of (1.6) are 
zero in the adhesion domain, the left side agrees with the quantity - f' (u.,,) (r,, / 8 (lo) j in the 
slip domain, while the right side do$s not exceed this quantity. The quantity T, can be ex- 
tracted from the family r also in the form of the relationship 

*OS (70) = max IS(Z) 
Irli-P(o,,)o,, 

(1.7) 

We emphasize that unlike (1.7), the right side of (1.6) is not determined by the varied 
function Z. Consequently, the difference between the right and left sides of (1.6) does not 
determine the increment of a certain functional. However, in some cases it can determine part 
of the increment (linear, say) of a functional and then in the presence of its convexity this 
is sufficient to give an equivalent extremal form to condition (1.6). Therefore, on the basis 
of (1.6) and (1.7) different variational formulations can be obtained for the boundary value 
problem, each of which possesses certain advantages. 

2. Reduction to a sequence of stationary inequalities. Foundation of a 
formulation in increments. we consider the problem in an interval TV IO, T]. We 
introduce the spaces V and V' of the function f(z,g,t) with the normal defined by the equalities 

IIflla~=llfI12v-t j Sf’“ddtdt 
OE 

We will assume that f (f*, f,) E V if fXcvl E V. Let I: be the set f such that If I< -p(o,) 

CbZ. 

Theorem 1. Let v E v, p (Uzz)Uz, E&(E), then the solution of problem (1.4), (1.5) under 
the initial conditions r(o)=? is equivalent to finding the function T,E X n V' which 
satisfies, for any sEzK n V‘, the evolutionary parabolic inequality 

f S[B(ro’)-B*(To)-v](r-ro)dxdydt>O (2.2) 
UE 

ro(0)=rO, rEpA T] 

Proof. The B and B* are, respectively, an operator with a weak singularity and a singular 
integral operator. As is well-known /g/, they act from 4(E) into .&(E). Therefore, the 
left side of (2.2) is defined. 

If the function To satisfies conditions (1.4) Vtes[O,Tl the following relationships are 
obviously satisfied: 

s(To)Td2dydt, 
OE OE 

Hence, taking (1.5) into account we obtain the inequality (2.2). 
To derive the boundary conditions from (2.21, we write (2.2) in the form G(t)<G(%,). As 

in /lo/, it can be shown that 

SU 
rEK V’ K 

G (1) = I @*cc) 

from which these results 

G (%) = I m, SS Is 6~) 70 + P (6z,) dill 1 s 60) II d+ dy dt = 0 
OE 

Since 4E A, we obtain that for almost all t and S,Y the equality 

s Fob) 70= --P@,,f J,,lS (TOO I 

equivalent to the boundary conditions (1.4), is satisfied. 
We will now consider methods of solving (2.2). We will reduce the evolutionary inequality 

(2.2) to a sequence of stationary elliptic inequalities. We separate the segment [O, Tl into 
equal intervals At = TIN. We examine the sequence of variational inequalities 

5[B(7~-~~~~)-AtB*(7~)-y*Alj(~-7~)d~dy~O 42.3) 

(k+l)At 

~EK, O<k<N---l, 7N”=7’, vk=+ \ v(t)dt 
khr 
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which are obtained by an implicit difference approximation /ll/ of inequalities (2.2). 

Theorem 2. For any fixed k and N the solution of (2.3) exists and is unique in L, (E). 

Proof. The kernel of the operator 3 * is skew-sxymmetric relative to the variables r,~! 
and z‘, fl'; consequently for any r,,r, the following equality holds 

EShE*(rt)d~dy=-SSrsB*(~l)drdy (2.4) 

Using the different structure of the kernel of the operator 3 and applying the Fourier 
transformFCwith parameter F;&, Es) taking the relationships 

into account, we obtain the inequality 

The monotonicity of the operator B- AtBf results from (2.4) and (2.5). This operator 
is continuous in L*(E)/9/. Moreover, vk~L,(E) for VE V, the set K is convex and closed 
in L,(E). Satisfaction of these requirements ensures the existence of the solution. 

An assumption about the possibility of two solutions r,,r, and their substitution into 
(2.3) will result in the inequality 

W(r,-r*)=+- BfT1-T*)(T1-r*)drdy~O 
1 

(2.6) 

To prove the impossibility of ( 2.6) it is sufficient to show by virtue of (2.5) that 

42.7) 

But if ~rI-~,~~ts,>O, then by virtue of the Parseval equality 

S I FE h) - FEW lWidEa> 0 B 
from which (2.7) and the uniqueness of the solution of (2.3) result. 

Now, let us integrate by parts on the left side of (2.2) and let us convert the inequality 
to the equivalent form 

+ 

ss 
[B(t')-~*(ro)-~J('C-~o)d2d61dt- (2.8) 

DE 

-g s [B (7 - 70) (7 - To) ds dy]Z, VT E K n V’, Vr E [O, T] 

In the terminology of /12, (2.2) and (2.8) are called, respectively, the strong and weak 
forms of the variational parabolic inequality. Since it is assumed in the examination of 
(2.2) that IZZV' (this is a narrower cl.ass of allowable functions than in /12/j, then the 
inequality (2.8) is equivalent to (2.2) /13/. 

We construct the function TN(~)E V by means of Tag, the solutions of (2.31, by 
defining it by the conditions 

rN fi) = T.N' for t E [kdt, (k + if Ad, 0 < k < N - 1 

Theorem 3. As N-too (At-O) weakly in V the functions TN converge to the solution of 
(2.8). 

Proof. The sequence r*(t) is bounded since it belongs to the bounded set K. Therefore, 
a weakly convergent sequence in V can be extracted from it. We retain the notation TN for it. 

If it is shown that the limit function T* satisfies inequality (2.8) and this solution 
is unique, then the theorem will be proved since all the other sequences zN should alSo 
converge to 7'. To prove uniqueness it is sufficient to write (2.8) twice for To = Q, f = r,; 
r,=r,,t=t, (7~ are the assumed solutions) and then combine the results. Finally, we obtain 
that inequality (2.6) should be satisfied for all r. Consequently, there cannot be two 
solutions of (2.8). 

Wewillnowprovethatr* satisfies inequaliv (2.8).We represent the variable function 
7EXf3V’ in the form of the limit of the sequence 1, E Cl ([O, Tl, L, (E)) such that T,,,-T. f,'-i 
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in V. 
We will show that (2.8) is satisfied for T,,=T*, r=r,and then we pass to the limit as 

m-P=. To do this we introduce the piecewise-constant function r,= +m(kAt),t~ [kdt, (k+1) At& 

I<k<N--i and the piecewise-linear function 

TI = 'm (kAt) + t {rm ((k -I- 1) At] - rrn (kAt))/Ai\t, t E IkAt, 
(k + 1) At1 

Substituting +N,zc,~t in place offs,?, and 7'. respectively, in the left side of (2.8) 

(denoted by Imn) below) we obtain 
N-l 

I lltn = r: s ~~~~,rw-~)~~l- xrn (kbt)) - At [v’ _t B* (z$‘)l) 

k=o E 

{r,[ (k Jr 1) At]-rr,+")dz dy-+ 5 B[@,, (iVAt)--rNN)] 

E 

Now, if (as in /12/, Ch.4), we sum the left side of (2.3) over k and use the identity 
(a - b, a) = ‘6 1 a la - I/% I b I* - I& 1 a - b Is, we then obtain that I,,>#. Thus, the validity of the 
inequality (2.8) is established for fixed m, N. 

We first pass to the limit as N-boo (At-O). By virtue of (2.4) we will have 

SS B* trNt (Tm 
OE 

is B*(~*)~~dxdgdf forzN-T* weakly 
OE 

The passage to the limit in the N remaining components of the left side of (2.8) is 
performed taking monotonicity of the operator B as well as the fact that r,-+r,', zl'+z,', 

v~v,z~--cz* (weakly) into account. After this, we pass to the limit over k on the left side 
of (2.3) by taking account of the properties of the approximation of r by the functions T,,,. 

Remark. The proof presented for Theorem 3 simultaneously establishes the existence of 
the solution of the variational inequality (2.8) that belongs to the space V. 

The original boundary value problem formulated in velocities is equivalent to the 
evolutionary inequality (2.2). The stationary inequality (2.3) can be set in correspondence 
with the equivalent boundary value problem formulated in increments of the desired functions. 
This is obtained from (1.4) and (1.5) by replacing the function s(t) by 

As'+' = ~~i\t--B((r~+'-~~f + AUP ($'+r) (2.Q) 

The proof of the equivalence of (2.3) and the boundary value problem in increments is 
analogous to the proof of Theorem 1. Theorem 3 is the foundation for using the formulation 
of the problem in increments. 

3. Reduction to the solution of a sequence of minimization problems. Direct 
methods of solution /ll, 14,' have been actively developed for stationary variational in- 
equalities with a monotonic operator of the type (2.3). However, experience with their 
practical utilization in solving three-dimensional boundary value problems with conditions 
in the form of inequalities still gives way to that accumulated in the realization of methods 
based on the minimization of functionals. 

We will now construct such methods for the problems under consideration. In conformity 
with one of the means noted in Sect.2, we will try to select the functional for which in- 
equality (2.3) is the sufficient condition for an extremum. The 0peratorPis non-symmetric, 
and consequently, because of the presence of the term AtB* in (2.3), such a functional does 
not exist in the general case. However, if the transfer velocities can be neglected, the 
following theorem holds. 

Theorem 4. In the case of slow body motions, the solution of the boundary value problem 
reduces to a sequence of minimization problems for the smooth (quadratic) function&s 

Proof. In tie case under consideration (in the absence of the operator B*) inequality 
(2.3) is the condition for positivity of the linear part of the increment of a quadratic 
functional. As is well-known /12/, the equivalence of (2.3) and (3.1) holds here (taking 
account of the symmetry of the operator R). In the same sense as in Theorem 3, convergence 

(3.1) 
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of the solution of (3.1) to the solution of the original problem occurs. 

Remark. The method of gradient projection /15/ using the procedure of step selection 
proposed by Fedorenko has shown high efficiency in the numerical solution of problem (3.1). 

Passage to the sequence of minimization problems can be realized even manually by using 
an extremal relationship of the type (1.7) and holds for the general case of body kinematics. 

Theorem 5. The solution of the boundary value problem reduces to a sequence of minimiz- 
ation problems of non-smooth functionals of the form 

(3.2) 

Proof * We consider the boundary value problem (1.41, (2.9) formulated in increments. It 
is seen from (2.9) that Ask+1 is the result of applying the operator B-A&3*, which is the 
sum of symmetric and skew-symmetric operators, to the desixed function xgx* An analogous 

boundary value problem in which either a symmetric or skew-symmetric operator was concerned 
was examined in /lo/, where its equivalence to the minimization problem (3.2) was proved. 
It turns out that the method of proof in /lo/ carries over completely to the case considered 
here of the presence of the operator B- AW. The convergence of the solution of the problem 
(3.2) as N-W (At- 0) results from Theorem 3. 

Remark. A special method* (*J?edorenko, R.P., A method for the numerical solution of 
three-dimensional contact problems of roll with slip and adhesion. Preprint IJo.159, Inst. 
Applied Math., USSR Academy of Sciences, Moscow, 1979.) based on combining the gradient 
projection and linear programming methods has been developed for the numerical realization 
of problems of the type (3.2). 

4. Qualitative properties of the solution. We will examine the formulation of 
the problem in increments. We call the solution x8 of problem (1.4), (2.9) with initial 
conditions stable if VeZ8, that from I[T"- rl,//< 6 the following inequalities result 

Ilr”(f)-T”(74H<8, Vh=f,2,... (4.1) 

Here 7’ (q,) is the solution with initial conditions tin. 
As is well-known, the operator B acts from the space HO..+.(E) into the space H*f* (E) 

and is hence bounded /9/. Taking this as well as inequality (2.5f into account, we conclude 
that the estimates 

(4.2) 

hold for any 7‘. 
Furthermore, to analyse the stability of the solution we use the norm of the space 

E-Y: (E)* which is the energetic space of the operator B, as follows from (4.2). 

Theorem 6. Let v' = v(x, g), Vk, then any solution of problem (1.41, (2.9) is stable. 

Proof. We will show that the inequality Wk= W(rk(r") -%k(v+,J) does not increase as k 
increases. Indeed, by the positive-definiteness of the operator B we have 

W*+' - Wk = .L = $ B (#+X(ro) - t’+l (r,,,) - T* (r’) $ 3 (rim)) (rktl (I“) - #+’ (s<,,)) & dy (4.3) 
E 

Cm the other hand, if we write inequality (2.3) twice, for $1=r@+'(~), I=T~+~(%) and 

@;I =~@+'+'(r&,r=r@+~(tO), and then combine the results, we obtain that L60. Therefore, we will 
have the sequence of inequalities 

EIIC(P)-Zkftitl)gl(;WkC;wo<clalO-T,, r 

from which the stability of the solution obviously results. 

Remark. The stability of any solution of the continuous problem (1.41, (1.5) can also 
be proved by using a continuous function of the time W(e (the analgoue of the Lyapunov 
function). 

We will examine the case of slow body motions further. We consider the following integral 
characteristics of the solution of a problem on simultaneous shear and rotation of the body 
(IJ# = vx" - wy, V" - vvO + 6~) for the interval tE IkAt, (k + 1)&l: 

Ak.=+- 
s 
vAt(+f + sk)dzdy, Z$,,=+ 

s 
i;:& I- &&f=dv 



62 

which are, respectively, the work of the friction forces on rigid slips, the projections of 
the total friction force acting on the body, on the coordinate axes, the rotational moment 
of the friction forces around the body axis, and the projection of the total friction force 
in the shear direction. 

Theorem 7. The work of the friction force A’ increases with time (as k increases). 
For the proof we consider inequality (2.3) in the absence of transfer velocities. We 

write it twice, for k = n, T = 9; k'= n $- 1, r = rn+l, and we then combine the results. We will 
therefore have 

Hence A n+i- Bn > 0. 

Corollary l*. Let 0 =O. Then the projection of the friction force in the shear 
direction increases with time, 

2o. Let 0 = 0, v,” = 0, v,” > 0 (v~*-= 0, II,” > 0). Then the projection of the force Txk(Tyk) 
on the s(g) axis increases with time. 

3O. Let u," = v," = 0, 0’>0. Then the moment of the friction force &f"' increases with 
time. 

These assertions result from the fact that the equalities 

Tk = A”/[ f(ux“)* -t (uvo)” At], T:<,,/(z&,At), M” = Ak/(aAt) 

hold under the conditions specified 
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